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By consideringall possible prime factors of 17, prove it is a prime number.
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(a) Fully factorise n® + 6n? + 8n.

(b) Prove that, if n is odd, n* + 6n? + 8n is odd and that if n is even, n® + 6n® + 8n is
even.
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(a) Fully factorise n® + 6n? + 8n. b)
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(b) Prove that, if n is odd, n* + 6n? + 8n is odd and that if n is even, n® + 6n® + 8n is
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(@) Two rational numbers, a and b are such that a = % and b = 2, where m, n, p,q are

integers with no common factors and n, g % 0.

Find expressions for ab and f

(b) Deduce whether or not ab and § are rational or irrational.
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(@) Two rational numbers, a and b are such that a = % and b = 2, where m, n, p,q are

integers with no common factors and n,q # 0.
Find expressions for ab and f
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Prove that the exterior angle in any triangle is equal to the sum of the two opposite
interior angles. You may use the diagram below to help
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Astandard chess board has 64 1x1 - sized squares.

Italso has 1 8x8 - sized square. a) Tx7] = L‘L q 2 x 2 SI2€D

() How many 2x2 - sized and 3x3 - sized squares are there on a standard chess board?

2 Lyl =36 3x3 sizED

(b) Hence show that there are 204 squares in total on a standard chess board.
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A standard chess board has 64 1x1 - sized squares. b
Italso has 1 88 - sized square.
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Prove that the suim of any three consecutive even numbers is a multiple of6. - LET THREE CONIECUTIVE EVEN NUmBELS
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Prove that f(x) 4 for all values of x, where f(x) = (3 — x)2 + 4.
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Prove that the square of an odd number is always odd.
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The set of numbers $ is defined as all positive integers greater than 5 and less than 10.
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Use a counter-example to prove that not all integers of the form 2" — 1, where n is an
integer, are prime.
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