# **1.1 Laws of Indices & Surds**

# **Question Paper**

| Course     | Edexcel IAL Maths: Pure 1   |
|------------|-----------------------------|
| Section    | 1. Algebra & Functions      |
| Торіс      | 1.1 Laws of Indices & Surds |
| Difficulty | V. Hard                     |

| Time allowed: | 60   |
|---------------|------|
| Score:        | /49  |
| Percentage:   | /100 |

(a) Write down the value of  $256^{\frac{1}{4}}$ 

[1 mark]

### **Question 1**

(b) Use your answer to part (a) to show that  $1 \div 256^{-\frac{3}{4}} = 64$ .

[2 marks]

## **Question 2**

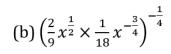
(a) Given that  $a^{\frac{2}{3}} = 16$ , find the possible values of *a*.

[3 marks]

# **Question 2**

(b) Simplify  $x^{-\frac{2}{3}} \div x^{-\frac{3}{4}}$ 

[2 marks]




Simplify the following expressions, giving your answers in the form  $ax^n$  where a and n are rational numbers and any fractions are in lowest terms.

(a) 
$$(8x^2)^{-\frac{1}{3}} \times \frac{1}{4}x^{-\frac{1}{3}}$$

[3 marks]

### **Question 3**



[3 marks]





[3 marks]

### **Question 4**

Given that  $y = \frac{81}{16}x^{-12}$ , express each of the following in the form  $ax^n$ , where a and n are constants.

(a)  $y^{\frac{3}{4}}$ 

[1 mark]

# **Question 4**

(b)  $y^{-\frac{1}{2}}$ 

[1 mark]

# Question 4 (c) $\left(y^{\frac{1}{2}}\right)^{-3}$

[2 marks]

(a) Show that  $2\sqrt{18} + \sqrt{50} - 5\sqrt{32} = a\sqrt{b}$ , where *a* and *b* are integers.

[3 marks]

### **Question 5**

(b) By expanding and simplifying, show that  $(\sqrt{12} - 3)(2 - \sqrt{75}) = 19\sqrt{3} - 36$ 

[3 marks]

### **Question 6**

(a)  $\sqrt{a} - \sqrt{b} = \sqrt{a - b}$  is not true in general. Give an example of an *a* and a *b* for which it *is* true.

[1 mark]

Head to <u>savemyexams.co.uk</u> for more awesome resources

#### **Question 6**

(b) Show that  $\frac{2-\sqrt{3}}{1+\sqrt{3}} = a + b\sqrt{3}$ , where *a* and *b* are rational numbers.

[4 marks]

### **Question 7**

Solve the equation  $\sqrt{20} + \frac{\sqrt{5}}{2x} = \frac{1}{x\sqrt{45}}$ 

[5 marks]

#### **Question 8**

(a) Expand  $(a + b\sqrt{5})^2$ .

[2 marks]

A square has an area of  $(49 + 12\sqrt{5})$  m<sup>2</sup> and a side length of  $(a + b\sqrt{5})$  m.

(b) Show that ab = 6, and explain why this proves that a and b must both be non-negative.

[2 marks]

### **Question 8**

(c) Show that  $a^4 - 49a^2 + 180 = 0$ .

[3 marks]

### **Question 8**

(d) By using the substitution  $y = a^2$  or otherwise, solve the equation  $a^4 - 49a^2 + 180 = 0$ . Hence determine the side length of the square.

[5 marks]