3.3 Trigonometric Functions

Question Paper

Course	Edexcel IAL Maths: Pure 1
Section	3. Trigonometry
Торіс	3.3 Trigonometric Functions
Difficulty	V. Hard

Time allowed:	60
Score:	/51
Percentage:	/100

By sketching an appropriate graph, find all the solutions to $\tan \theta = \frac{-1}{\sqrt{3}}$, in the interval $0^{\circ} \le \theta \le 360^{\circ}$.

[4 marks]

Question 2

- (i) On the same set of axes, sketch the graphs of $y = \cos(-2\theta)$ and $y = \cos\frac{1}{2}\theta$ in the interval $-2\pi \le \theta \le 2\pi$. Label the axes appropriately to show all points of intersection between the graphs and the coordinate axes.
- (ii) State the periodicity of each function.

[6 marks]

(a) On the same set of axes, sketch the graphs of $y = \sin \frac{1}{2}\theta$ and $y = \sin(\theta + 30^\circ)$ in the interval $-270^\circ \le \theta \le 270^\circ$. Label the coordinates of points of intersection with the coordinate axes and of maximum and minimum points where appropriate.

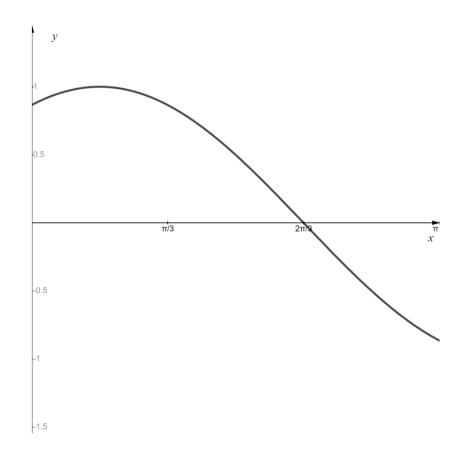
[4 marks]

Question 3

(b) Find the solution to the equation $\sin \frac{1}{2}\theta = \sin(\theta + 30^\circ)$ within the interval $-90^\circ \le \theta \le 0^\circ$. Hence, determine the coordinates of the corresponding point of intersection between the two graphs in part (a).

[2 marks]

Question 4


(a) On the same set of axes, sketch the graphs of $y = \tan \frac{1}{2}\theta$ and $y = \tan \left(\theta - \frac{\pi}{6}\right)$ in the interval $-2\pi \le \theta \le 2\pi$. Label the coordinates of points of intersection with the coordinate axes.

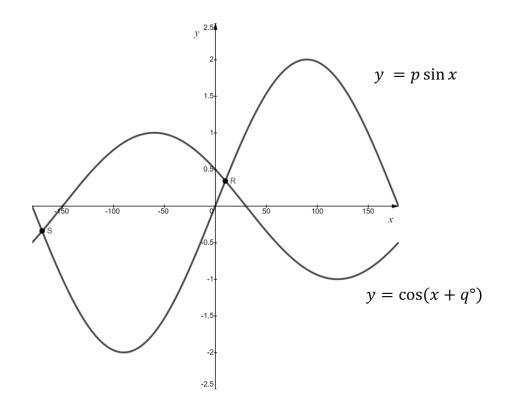
[4 marks]

(b) Within the interval $-2\pi \le \theta \le 2\pi$, determine the coordinates of the two points where $\tan \frac{1}{2}\theta = \tan \left(\theta - \frac{\pi}{6}\right)$. Give your answer in surd form.

[3 marks]

The graph below shows part of the curve with equation y = sin(x + k), where the angle is measured in radians and k is a constant.

(a) A student states that there are an infinite number of possible values for *k*. Is the student correct? You must explain your answer fully.


[2 marks]

Question 5

(b) Another student claims that the curve could also be the graph of the equation y = cos(x + k). Find a value for k to show that the student is correct.

[2 marks]

The graph below shows two curves with equations $y = p \sin x$ and $y = \cos(x + q^\circ)$, in the interval $-180^\circ \le x \le 180^\circ$, where *p* and *q* are integers.

(a) Using the graph above, find the values of *p* and *q* and label the points of intersection each graph has with the coordinate axes.

[4 marks]

(b) Within the stated interval, the curves intersect at the two points *R* and *S* as shown in the diagram. The coordinates of point *R* are (9.90°, 0.34), accurate to 2 decimal places. By considering the graph, as well as the properties of the sine and cosine functions, state the coordinates of Point *S*, to two decimal places.

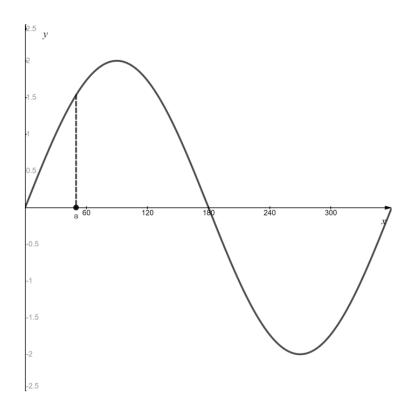
[2 marks]

Question 7

- (i) Describe geometrically the transformation that maps the graph of $y = \frac{1}{3} \tan x$ onto the graph of $y = 3 \tan x$.
- (ii) On the graph of $y = \tan x$, a point *S* has coordinates $\left(\frac{\pi}{3}, \sqrt{3}\right)$. State the new coordinates of point *S* after a transformation onto each of the graphs in part (i). Give your answers in surd form.

[6 marks]

(a) Describe geometrically the transformation that maps the graph of $y = sin(x + 20^\circ)$ onto the graph of $y = cos(x + 20^\circ)$.


[2 marks]

Question 8

(b) On the same set of axes, sketch both graphs in the interval $-180^{\circ} \le x \le 180^{\circ}$. Label the coordinates of any points of intersection between the two graphs.

[2 marks]

The graph below shows the curve with equation $y = 2 \sin \theta$, in the interval $0^{\circ} \le \theta \le 360^{\circ}$. One value of θ has been labelled ($\theta = a^{\circ}$).

Use the graph, along with the symmetry properties of the sine function, to verify that

 $2\sin a = 2\sin(180^\circ - a) = -2\sin(180^\circ + a) = -2\sin(360^\circ - a).$

[2 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 10

A function $f(x) = \cos px$, $0 \le x \le 2\pi$, first crosses the *x*-axis at $\frac{\pi}{10}$.

- (i) Determine the value of *p* and sketch the graph of y = f(x).
- (ii) State the period of f(x).

[6 marks]