

4.1 Differentiation

Question Paper

Course	Edexcel IAL Maths: Pure 1
Section	4. Differentiation
Topic	4.1 Differentiation
Difficulty	Easy

Time allowed: 50

Score: /42

Percentage: /100

Differentiate

- (i) 5x,
- $2x^{3}$, (ii)
- $x^{\frac{1}{2}}$. (iii)

[3 marks]

Question 2

(a) Write down the gradient of the line with equation y = k, where k is a constant.

[1 mark]

Question 2

(b) Find the gradient at the point where x = 8 for the following functions

- (i) $f(x) = 3x^2$, (ii) $f(x) = 4x^3 2x$, (iii) $f(x) = 3x^{\frac{1}{3}}$.

- (i) Expand (x + 3)(x 2).
- (ii) Hence differentiate (x + 3)(x 2).

[3 marks]

Question 4

Given that
$$y = 2x^{\frac{1}{2}} + 3x^{-1}$$
, find $\frac{dy}{dx}$.

[2 marks]

Question 5

Find the *x*-coordinate of the point on the curve $y = 5x^2 - 16x$ where the gradient is 4.

Find the coordinates of the points on the curve $y = 2x^3 - 9x^2 + 12x$ where the gradient is 0.

[4 marks]

Question 7

Find
$$\frac{dy}{dx}$$
 when $y = (\sqrt{x})^3 + \frac{2}{\sqrt{x}}$.

(a) The function f(x) is given by

$$f(x) = \frac{2x^{\frac{1}{3}} + 3x^{\frac{2}{3}}}{x}.$$

Show that f(x) can be written in the form $f(x) = ax^b + cx^d$, where a, b, c and d are constants to be found.

[3 marks]

Question 8

(b) Find f'(x).

[3 marks]

Question 9

(a) Find an expression for $\frac{dy}{dx}$ when $y = 3x^2 - 2x$.

[2 marks]

- (b) Find the gradient of $y = 3x^2 2x$ at the points where
 - (i) x = 3,
 - (ii) x = -2.

[2 marks]

Question 10

- (i) Find the gradient of the tangent at the point (2, 3) on the graph of $y = 2x^3 3x^2 1$.
- (ii) Hence find the equation of the tangent at the point (2, 3).

[5 marks]

(a) For the graph with equation $y = 3x - \frac{1}{2}x^2$, find the gradient of the tangent at the point where x = 5.

[2 marks]

Question 11

- (b) (i) Find the gradient of the normal at the point where x = 5.
 - (ii) Hence find the equation of the normal at the point where x = 5.