

4.4 Sequences & Series

Question Paper

Course	Edexcel IAL Maths: Pure 2
Section	4. Sequences & Series
Topic	4.4 Sequences & Series
Difficulty	Hard

Time allowed: 30

Score: /28

Percentage: /100

Question 1

Given that
$$\sum_{r=1}^{k} (31 - 6r) = -943$$
,

- (i) Show that (3k + 41)(k 23) = 0
- (ii) Hence, find the value of k.

[4 marks]

Question 2

Given that
$$\sum_{r=1}^{k} 7 \times 3^r = 620004$$
,

(a) Show that
$$k = \frac{\log 59049}{\log 3}$$

[4 marks]

Question 2

(b) For this value of k, calculate $\sum_{r=0}^{k+3} 7 \times 3^r$.

[3 marks]

Question 3

Given that $\sum_{n=1}^{9} (a + (n-1)d) = -279$ and $\sum_{n=1}^{13} (a + (n-1)d) = -585$, find the values of a and d.

[4 marks]

Question 4

A convergent geometric series is given by $1 - 4x + 16x^2 - 64x^3 + ...$

(a) Write down the range of possible values of x.

[3 marks]

Question 4

Given that
$$\sum_{n=1}^{\infty} (-4x)^{n-1} = 24$$

(b) Calculate the value of x.

[3 marks]

Question 5

The terms of a sequence are defined, for all $k \ge 1$, by $u_k = (-1)^k \times k^2$.

(a) State, with a reason, whether this sequence is increasing, decreasing, or neither.

[1 mark]

Head to savemyexams.co.uk for more awesome resources

Question 5

It can be shown that, for all $n \ge 1$,

$$\sum_{r=1}^{n} (2r)^2 = \frac{2n(n+1)(2n+1)}{3} \quad \text{and} \quad \sum_{r=1}^{n} (2r-1)^2 = \frac{n(2n+1)(2n-1)}{3}$$

Using those formulas,

(b) Show that
$$\sum_{r=1}^{100} u_r = \sum_{r=1}^{100} r$$
.

[6 marks]