

8.1 Integration

Question Paper

Course	Edexcel IAL Maths: Pure 2			
Section	8. Integration			
Topic	8.1 Integration			
Difficulty	Hard			

Time allowed: 80

Score: /68

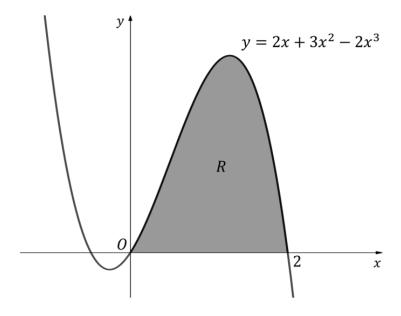
Percentage: /100

Use calculus to find the value of

$$\int_4^9 \frac{x^2 + 1}{\sqrt{x}} \, \mathrm{d}x$$

[5 marks]

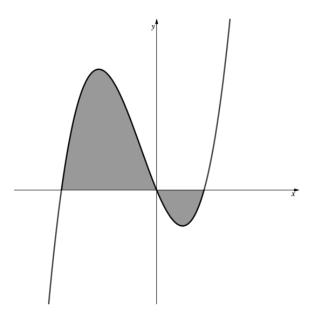
Question 2


Given

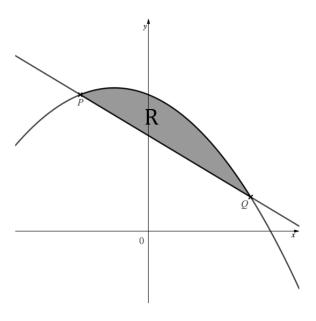
$$\int_{1}^{p} (1 + \frac{1}{x^2}) \, \mathrm{d}x = \frac{15}{4}$$

find the value of the constant p, where p > 0.

[5 marks]


The diagram below shows part of the graph of $y = 2x + 3x^2 - 2x^3$.

Find the area of the shaded region labelled R.

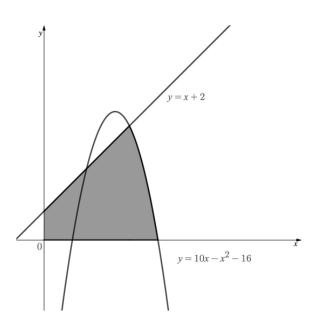

[4 marks]

The diagram below shows part of the graph of y = x(x - 1)(x + 2). Find the total area of the two shaded regions.

[8 marks]

The line with equation 5y = 14 - 3x cuts the curve with equation $5y = 20 - 2x - x^2$ at the points P and Q, as shown.

(a) Find the x- and y-coordinates of the points P and Q.

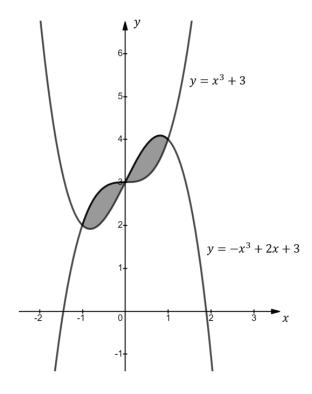

[5 marks]

Question 5

(b) Find the exact area of the region labelled R, giving your answer in the form $\frac{a}{b}$, where a and b are integers to be found.

[6 marks]

The diagram below shows the graphs of y = x + 2 and $y = 10x - x^2 - 16$.



Find the exact area of the shaded region.

[11 marks]

The diagram below shows a sketch of the curves with equations

$$y = x^3 + 3$$
 and $y = -x^3 + 2x + 3$

(a) Find the x-coordinates of the points of intersection of the two graphs.

[2 marks]

Question 7

(b) Use calculus to find the total shaded area enclosed by the two graphs.

[5 marks]

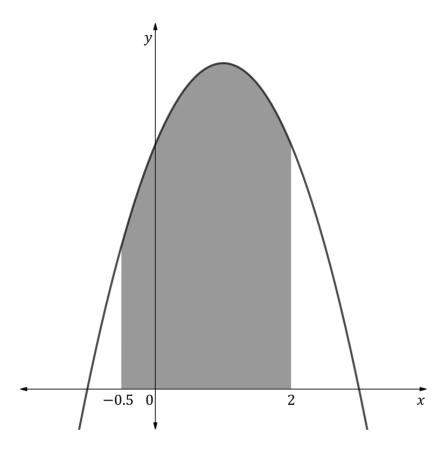
The trapezium rule is to be used to find an estimate for the integral

$$\int_{4}^{8} f(x) dx$$

The table below shows values for x and f(x), rounded to three significant figures where appropriate.

x	4	4.5	5	5.5	6	6.5	7	7.5	8
f(<i>x</i>)	3.16	3.39	3.61	3.81	4	4.18	4.36	4.53	4.69

- (a) Using the values in the table find
 - (i) an estimate for the integral using 2 strips,
 - (ii) an estimate for the integral using 4 strips,
 - (iii) an estimate for the integral using 8 strips.


[4 marks]

(b) Justify which of the estimates from part (a) will be the most accurate estimate for the integral.

[2 marks]

Question 9

The diagram below shows part of the graph with equation $y = 3 + 2x - x^2$.

Use the trapezium rule with 5 strips to find an estimate for the shaded area, giving your answer to three significant figures.

[5 marks]

(a)	Use the trapezium rule with $h=0.25$ to find an estimate for the area bounded by the
	curve with equation $y = 1 + 2^x$, the <i>x</i> -axis and lines with equations $x = 1$ and $x = 2$.
	Give your answer to five significant figures.

[4 marks]

Question 10

(b) The integral

$$\int_1^2 (1+2^x) \, \mathrm{d}x$$

can be evaluated as 3.8854 to five significant figures. Using this as its exact value, calculate the percentage error of your estimate from part (a).

[2 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources