

2.2 Compound & Double Angle Formulae

Question Paper

Course	Edexcel IAL Maths: Pure 3
Section	2. Trigonometry
Topic	2.2 Compound & Double Angle Formulae
Difficulty	Easy

Time allowed: 50

Score: /45

Percentage: /100

- (i) Write down the exact value of cos 60°.
- (ii) Write down the exact value of cos 45°.
- (iii) Use your calculator to find the exact value of cos 105°.
- (iv) Hence show that $\cos 60^{\circ} + \cos 45^{\circ} \neq \cos 105^{\circ}$.

[5 marks]

Question 2

(a) Express $\sin 15^{\circ}$ in terms of $\sin 45^{\circ}$ and $\sin 30^{\circ}$.

[2 marks]

Question 2

(b) Hence show that

$$\sin 15^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}$$

[3 marks]

(a) Starting with the identity

$$\sin(A+B) \equiv \sin A \cos B + \sin B \cos A$$

And using the substitution B = A, show that $\sin 2A \equiv 2 \sin A \cos A$.

[2 marks]

Question 3

(b) Hence show the exact value of $\sin 120^\circ = \frac{\sqrt{3}}{2}$.

[2 marks]

Question 4

(a) Use an appropriate identity to find $sin(\theta + \alpha)$ in terms of sines and cosines of θ and α .

[2 marks]

(b) Hence show that $R \sin(\theta + \alpha) \equiv R \cos \alpha \sin \theta + R \sin \alpha \cos \theta$.

[1 mark]

Question 5

Solve the following equations in the given intervals.

(a)
$$\sin 2\theta = \frac{1}{2}$$
, $-\pi \le \theta \le \pi$

[4 marks]

Question 5

(b)
$$\cos 2\theta = \frac{\sqrt{3}}{2}$$
, $0 \le \theta \le 2\pi$

[4 marks]

Show that

$$5\cos(\theta - \frac{\pi}{6}) \equiv \frac{5\sqrt{3}}{2}\cos\theta + \frac{5}{2}\sin\theta$$

[4 marks]

Question 7

Show that

$$\cos^2 x + \cos 2x \equiv 3\cos^2 x - 1$$

[2 marks]

- (a) (i) Show that $R \sin(\theta + \alpha) \equiv R \cos \alpha \sin \theta + R \sin \alpha \cos \theta$, where R and α are constants with R > 0 and $0 < \alpha < \frac{\pi}{2}$.
 - (ii) Use your result from part (i) to show that $\sqrt{3} \sin \theta + \cos \theta \equiv 2 \sin(\theta + \frac{\pi}{6})$.

[4 marks]

Question 8

(b) Write down the maximum value of $\sqrt{3} \sin \theta + \cos \theta$.

[1 mark]

Question 9

Sketch the graph of $y = \tan 2\theta$ for $0 \le \theta \le 2\pi$. Label the points at which the graph intersects the coordinate axes.

[3 marks]

(a) Use the difference of two squares to show that

$$\cos^4 x - \sin^4 x \equiv \cos 2x$$

[3 marks]

Question 10

(b) Hence solve the equation

$$\cos^4 x - \sin^4 x = \frac{\sqrt{2}}{2}$$

for
$$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$$
.

[3 marks]