3.2 Modelling with Exponentials & Logarithms

Question Paper

Course	Edexcel IAL Maths: Pure 3	
Section	3. Logs & Exponentials	
Торіс	3.2 Modelling with Exponentials & Logarithms	
Difficulty	Easy	

Time allowed:	40
Score:	/36
Percentage:	/100

State whether the following functions could represent exponential growth or exponential decay.

- (i) $f(x) = 5e^{2x}$
- (ii) $f(t) = 100e^{-t}$
- (iii) $f(a) = 20e^{-ka}, k > 0$
- (iv) $f(t) = Ae^{kt}, A, k > 0$

[4 marks]

Question 2

Write the following in the form e^{kx} , where k is a constant and k > 0.

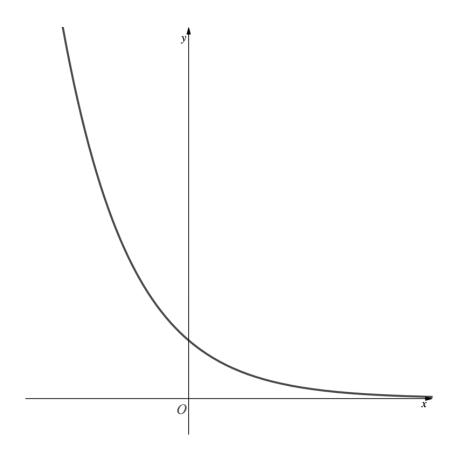
- (i) $e^{3x} \times e^{2x}$
- (ii) 5^x
- (iii) 2^x

[3 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 3

Write the following in the form e^{-kx} , where k is a constant and k > 0.


(i)
$$\frac{e^{-2x}}{e^{4x}}$$

(ii) $\left(\frac{1}{5}\right)^{x}$
(iii) $\left(\frac{1}{2}\right)^{x}$

[3 marks]

The diagram below shows a sketch of the graph of $y = e^{-x}$.

On the diagram, add the graph of $y = e^{-2x}$ labelling the point at which the graph intersects the *y*-axis.

Write down the equation of any asymptotes on the graph.

(a) By taking logarithms (base e) of both sides show that the equation

 $y = Ae^{kx}$

can be written in the form $\ln y = kx + \ln A$

[3 marks]

Question 5

(b) Hence ...

(i) ... write the equation $y = 2e^{0.01x}$ in the form $\ln y = kx + \ln A$.

(ii) ... write the equation $\ln y = 0.3x + \ln 5$ in the form $y = Ae^{kx}$.

[4 marks]

In an effort to prevent extinction scientists released 24 rare birds into a newly constructed nature reserve.

The population of birds, within the reserve, is modelled by

$$B = Ae^{0.4t}$$

B is the number of birds after *t* years of being released into the reserve. *A* is a constant.

(a) Write down the value of *A*.

[1 mark]

Question 6

(b) According to this model, how many birds will be in the reserve after 2 years?

[2 marks]

Question 6

(c) How many years after release will it take for the population of birds to double?

[2 marks]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Question 7

A simple model for the acceleration of a rocket, $A \text{ ms}^{-2}$, is given as

 $A = 10e^{0.1t}$

where *t* is the time in seconds after lift-off.

(a) What is the meaning of the value 10 in the model?

Question 7

(b) Find the acceleration of the rocket 15 seconds after lift-off.

[2 marks]

[1 mark]

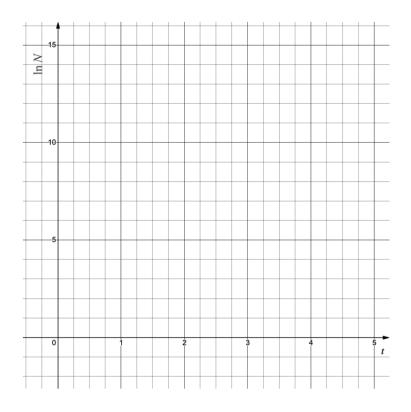
Question 7

(c) Find how long it takes for the acceleration to reach 100 ms^{-2} .

[3 marks]

An exponential growth model for the number of bacteria in an experiment is of the form $N = Ae^{kt}$.

N is the number of bacteria and *t* is the time in hours since the experiment began.


A and k are constants.

A scientist records the number of bacteria every hour for 3 hours.

The results are shown in the table below.

t, hours	0	1	2	3	4
N, no. of	100	210	320	730	1580
bacteria					
ln <i>N</i> (3SF)	4.61	5.35	5.77	6.59	7.37

(a) Plot the observations on the graph below - plotting $\ln N$ against t.

[1 mark]

Question 8

(b) Using the points (0, 4.61) and (4, 7.37), find an equation for a line of best fit in the form $\ln N = mt + \ln c$, where *m* and *c* are constants to be found.

[2 marks]

(c) Hence estimate the values of *A* and *k*.

[2 marks]